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Research context 
To assist experts of Security Operations Centers (SOC) [1] to better detect and respond to cyberattacks, 
the next generation of Security Orchestration Automation and Response (SOAR) frameworks [2] will 
need to incorporate multiple explainable AI services to keep up with the powerful AI services that are 
rapidly becoming available at ever lower cost to malevolent actors. The design, prototyping and benefit 
evaluation of such next generation SOAR framework is the topic of the ongoing collaborative Franco-
Luxembourgish research project ANCILE (AutoNomous Cybersecurity with Interpretable Learning) co-
funded France’s Agence Nationale pour la Recherche (ANR) and Luxembourg’s Fond National pour la 
Recherche (FNR). The thesis or post-doctoral research hereby described is funded by the ANR budget 
of the project which consortium is composed of Luxembourg Institute of Science Technology (LIST), 
Université Paris 1 Panthéon-Sorbonne (UP1PS), l’Ecole Nationale des Sciences et Techniques Avancées 
de Bretagne (ENSTAB), l’Ecole Supérieure d’Informatique-Electronique-Automatique (ESIEA) and the 
cybersecurity startup Gatewatcher. 

Among the various innovative AI services to be designed, prototyped, integrated and evaluated in 
ANCILE, two constitutes the scope of the hereby proposed research: (a) cyberattack planning the 
action sequence of a multistep persistent, stealth attack1 and (b) runtime response planning a 
sequence of network and service reconfiguration actions mitigating the impact of such an attack. They 
are both blue-sky research topics and the two faces of the same game-theoretic coin that can be 
investigated in synergy. 

Both these tasks pertain to the most challenging variety of the AI planning task family [3] since their 
environment is simultaneously: 
 Adversarial in a zero-sum game between an attacker and a responder that use lateral, confounding 

moves to hide their intentions, rather than attempting to directly achieve their objectives. 
 Real-time with state changes occurring during both the elaboration and execution of the plan 

triggered both by asynchronous adversary’s actions and the normal network activities. 
 Non-deterministic for the effects of attack or response actions due to both the tasks’ adversarial 

nature and the non-attack related, background transient connection failures occurring in any 
service provided over a network 

 Partially observable, again due to the tasks’ adversarial nature, as well as the sheer size of a real 
network state which model cannot be maintained and reasoned upon only at the lowest level of 
granularity inside which attacks often hide themselves (e.g., bits in packets or binary code) 

 Relational, for many attack and response plans are based on multiple spatiotemporal relations 
among classes of services and network infrastructure elements, rather than the mere properties 
of a single network element at a given time point. 

 Multi-objective, for mitigating an attack involves trading-off multiple conflicting objectives, such 
as maximizing service availability, data confidentiality and integrity (plus physical safety for cyber-
physical systems), while minimizing the operational disturbances and cost overhead of the attack 
response network reconfiguration, that cannot all be fully satisfied by any single possible plan; 
similarly an attack plan must also trade-off between reaching the attack objective as soon as 
possible while remaining undetected as long as possible. 

Cyberattack planning and cyberattack response planning are best framed as a Decision-Theoretic 
Online Hierarchical Planning (DTOHP) problem. Decision-theoretic planning [3] [4] [5] is required for 
multi-objective planning in a non-deterministic environment. Online planning [3]. with limited look-
ahead, but plan execution monitoring and contingency replanning from updated sensor data is 

 
1 Often called Adverse Persistent Threats [10] in the cybersecurity literature.  



required in real-time, non-deterministic and partially observable environments. Hierarchical planning 
[3] is required for environments, such as computer networks, that are too complex to be reasoned 
upon at a single level of abstraction, but in which knowledge must be decomposed into hierarchies of 
representation granularities. 

The adversarial nature of cybersecurity requires knowledge encapsulated in all SOAR AI services, and 
thus in particular, in attack response planners, to continuously evolve while in operations through 
adversarial continual dev-ops learning [6]. This is needed to keep up with to new attack plans devised 
daily by malevolent actors based on social engineering, hitherto unknown vulnerabilities (so called 
zero-day attacks) or known vulnerabilities for which a patch has not yet been released. While the goal 
of a SOAR is to help orchestrate and automate the response to attacks, in ANCILE, we also include an 
attacking service in it, precisely to adversarially co-train [7] the response services by pitting them 
against attacking services in series of zero-sum attack-defense simulations. This co-training is the way 
we propose to leverage AI to stealthily and automatically anticipate part of human attackers’ creativity. 

Finally, due to multifaceted impact and ramifications that a reconfiguration, responding to an attack, 
can have on a critical digital infrastructure, the response plans proposed by a SOAR AI need to be 
clearly explainable to the three levels of SoC human cybersecurity experts. They must fully understand 
the pros and cons of the AI proposed responses, and their possible alternatives, to decide which one 
to execute either as is, manually altered or not all. 

State of the art 
Scientific research in decision-theoretic, online and hierarchical varieties of AI planning has a long and 
storied history [3]. However, integrating the three together with continual, dev-ops, adversarial 
learning and co-training and applying the whole to cyberattack and cyberattack response planning 
seems to be a blue-sky research direction that has never been investigated so far. 

A preliminary, Google scholar search with the queries:  
 "decision-theoretic" AND (“attack planning” OR “intrusion planning” OR “Advanced Persistent 

Threat planning” OR “APT planning” OR ((planner OR "planning system") AND (cyberattack OR 
"cyber-attack" OR "cyber attack" OR "red teaming" OR "red-teaming"))) 

 "decision-theoretic" AND ("mitigation planning" OR "planning mitigation" OR “response planning” 
OR “planning response” OR ((planner OR "planning system") AND (cyberdefense OR "cyber-defense" 
OR "cyber defense" OR "blue teaming" OR "blue-teaming"))), 

only yielded single relevant paper related to the research topic hereby proposed: “Response Planning”, 
a book chapter [8] by Musman and Booker. It discusses the effectiveness on midsize networks of a 
decision-theoretic approach that models response planning as an adversarial Partially Observable 
Markov Decision Process (POMDP) [3]. They present and evaluate the Automated Reasoning Cyber 
Response (ARCR) planner that they implemented on top of the Approximate POMDP Planning (APPL) 
toolkit2. ARCR assumes that the attacker’s policy is fixed and models it as one aspect of the state 
transition function of the POMDP. This approach shows the promise of decision-theoretic planning for 
cyberattack response planning. In the research hereby proposed, we will investigate its main two 
limitations. The first is the assumption that the strategy of the attacker is known and fixed. We will 
investigate how adversarial learning of planning rules can overcome it. The second limitation is the 
propositional nature of the network state representation as bit strings. It does not scale up for realistic 
operational networks and does not support neither hierarchical planning nor cognitively efficient 
explanations for SoC operators under the stress of devising an attack response in real time. In ANCILE 
we will investigate how to overcome it by using a relational first-order representation. 

 
2 http://bigbird.comp.nsu.edu.sg/pmwiki/farm/appl/ 



Research questions and hypotheses 
To advance this state-of-the-art, the thesis will investigate the following open research questions: 
 Q1: What Knowledge Representation Language (KRL) [15] can be reused as is or extended to 

uniformly represent models of cyberattack actions and plans, as well as cyberattack response 
actions and plans 

 Q2: What Inference Engine (IE) [16] [17] for this KRL can be reused as is or extended so as to carry 
out and explain, in scalable fashion, attack and response DTOHP? 

 Q3: What Machine Learning Engine (MLE) [18] can be reused as is or extended to automatically 
acquire and continually revise models in this KRL for attack and response planning from new data 
produced either by sensors during operations or by adversarial training simulations? 

Previous research suggests considering Decision-Theoretic Probabilistic Logic Programs with the 
Event Calculus (DTPLPEC) [11] [12] [13] [14], as the most promising starting hypothesis H1 for Q1 and 
the Causal Probabilistic Logic Interpreter (CPLInt) [19] as the most promising hypothesis H2 for both 
Q2 and Q3. H1 is based on the demonstrated ability (a) of an LPEC to declaratively and formally 
represent executable models for hierarchical planning [12], (b) of a DTPLP to do the same for decision-
theoretic reasoning [20] and planning [4], (c) of a PLPEC to do the same for uncertain reasoning in 
complex spatiotemporal relational domains [14] and (d) of such PLPEC to be continually improved by 
machine learning from new data as they become available during operations [21]. H2 is based on 
CPLInt’s [19] integration, in a single AI toolkit, of IEs for both exact and approximate first-order 
probabilistic and decision-theoretic inference, as well as MLE for learning both the parameters (i.e., 
probabilities) and the structure (i.e., logical rules) of a PLP, from training data, under optional 
background knowledge constraints themselves expressed as a partial PLP. 

Proof-of-concept implementation and validation experiments 
Evidence for the answers to these questions given in the dissertation will be provided through: 
 The implementation of proof-of-concept prototypes of (a) a cyber-attack planning DTPLPEC and (b) 

a cyber-attack response planning DTPLPEC. Each one will be encapsulated in a containerized web 
service to be readily interoperable with the other services of ANCILE’s SOAR framework. 

 The results of the red team cyber-attack vs. blue team cyber-defense simulations on ESIEA’s SOC, 
in which: 
o The red team will be assisted successively first by (a) open-source tools currently available as 

baseline, then by (b) the manually written attack planning DTPLPEC, and finally by (c) its 
improvement through adversarial ML. 

o The blue team will be assisted successively first by (a) The baseline integration of ESIEA’s SOC 
individual attack clues detector with Gatewatcher’s [22], then by (b) the extension of this 
integration with the manually implemented pipeline of (b1) an individual attack clues detection 
PLP, feeding (b2) an attack plan recognition PLP, feeding (b3) an attack response planning 
DTPLPEC, and finally by (c) the improvement of this pipeline through adversarial ML. 
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