
PANTHÉON SORBONNE

EVALUATION METHODS FOR GENERATED CODE

CURRENT AND FUTURE METHODS TO EVALUATE THE QUALITY OF

GENERATED CODE

AUTHORS

ETIENNE BAUMGARTNER

Université Panthéon-Sorbonne

MSc MIAGE

Mémoire

PARIS, MARCH 2024

PANTHÉON SORBONNE

EVALUATION METHODS FOR GENERATED CODE

CURRENT AND FUTURE METHODS TO EVALUATE THE QUALITY OF

GENERATED CODE

AUTHORS

ETIENNE BAUMGARTNER

Student No. 12309480

SUPERVISOR

NICOLAS HERBAUT, ASSOCIATE PROFESSOR

PARIS, MARCH 2024

Declaration of Authorship

I declare on my honour that the work presented in this dissertation, entitled “Evaluation
methods for generated code,” is original and was carried out by Etienne Baumgartner
(12309480), under the supervision of Professor Nicolas Herbaut, Associate professor
(nicolas.herbaut@univ-paris1.fr).

Paris, March 2024

Etienne Baumgartner

i

Acknowledgements

I would like to extend my gratitude to my former boss, Pascal Müller. During one of
our discussions regarding the influence of AI, he shared a personal perspective. He
remarked that it is the first time in this digital era, that he perceives a threat to the job as
software engineer — a sentiment that has remained with me ever since.

His words prompted me to ponder a fundamental question: What distinguishes
generated code from what a software engineer such as myself produces? This inquiry
served as the catalyst for formulating my research questions, guiding the trajectory of
my investigation.

ii

Abstract

Recent advancements in large language models have led to significant progress in
the code generation tasks. However, the evaluation of these models has primarily
relied on metrics intended to assess natural language, only recently shifting towards
measuring functional correctness using unit testing. As code generation models are able
to operate in larger problem domains and wider scopes, the current evaluation setup
needs reevaluation.
This thesis illustrates currently used evaluation methods and their origins and researches
the potential integration of software engineering metrics into the evaluation process.
The study identifies several widely accepted software metrics suitable for indicating the
quality of generated code.

Keywords: Evaluation metrics, Software metrics, Code quality, Code generation,

Functional correctness, Quality indicators

iii

Contents

Contents iv

List of Figures vi

List of Tables vii

Acronyms viii

1 Introduction 2

2 Background 4
2.1 Code Naturalness . 4

2.1.1 Code vs. Text . 5
2.2 Models . 7

2.2.1 Model basis . 7
2.2.2 Model sizes . 8

3 Methodology 11

4 Results 15
4.1 Existing evaluation . 15

4.1.1 NLP Methods . 15
4.1.2 NLP Metrics & Naturalness of Code 18
4.1.3 Functional Correctness . 20
4.1.4 Current state of evaluation metrics and the lack thereof 22

4.2 Software Engineering metrics . 24
4.2.1 Quality indicators . 24
4.2.2 Extraction . 25
4.2.3 Resulting indicators and considerations 27
4.2.4 Software metrics . 28
4.2.5 Code Smells . 33
4.2.6 Results and Considerations . 35

iv

CONTENTS v

5 Discussion 36
5.0.1 Threads . 36
5.0.2 Future research . 37

6 Conclusion 39

List of Figures

2.1 Parameter count of various open and closed source models 10
2.2 Token window size for various open and closed source models 10

3.1 Research methodology . 14

vi

List of Tables

2.1 Parameter count and token window size per model and year. 9

4.1 Existing evaluation methods and metrics 22
4.2 Quality indicators . 28
4.3 Software metric candidates . 33
4.4 Code smells . 34

vii

Acronyms

ASG Abstract Semantic Graph. (p. 18, 20)
AST Abstract Syntax Tree. (p. 18–20, 29)

CBO Coupling between Objects. (p. 29, 30, 33)
CC Cyclomatic Complexity. (p. 28, 29, 33)

DIP Dependency Inversion Principle. (p. 26, 27)
DIT Depth of Inheritance Tree. (p. 30, 33)

FI Fan-In. (p. 32, 33)
FO Fan-Out. (p. 32, 33)

GPT Generative Pre-trained Transformer. (p. 2)

ISP Interface Segregation Principle. (p. 26)

LLM Large Language Model. (p. 3–6, 22, 39)
LLOC Logical Lines of Code. (p. 31)
LOC Lines of Code. (p. 31, 33, 34)
LOCM Lack of Cohesion in Methods. (p. 30, 33)
LSP Liskov Substitution Principle. (p. 26)

MBPP Mostly Basic Programming Problems. (p. 21, 22)

NLP Natural Language Processing. (p. 2, 3, 7, 13, 15, 18, 20, 22, 35, 37, 39)
NOA Number of Attributes. (p. 32, 33)
NOC Number of Children. (p. 31–33)
NOM Number of Methods. (p. 32, 33)

OCP Open-Closed Principle. (p. 25)
OOP Object-Oriented Programming. (p. 27, 28, 36)

PLOC Physical Lines of Code. (p. 31, 33)

viii

Acronyms 1

RFC Response for a Class. (p. 31, 33)
RNN Recurrent Neural Network. (p. 7, 8)

SRP Single Responsibility Principle. (p. 25)

WMC Weighted Methods per Class. (p. 29, 33)

1

Introduction

Natural Language Processing (NLP) models encompass a set of machine learning
algorithms that exploit the fundamental structure of human language. These models
leverage the statistical distribution inherent in human language, effectively predicting
word sequences and generating extensive, syntactically coherent text. Interestingly,
when trained on code, such models demonstrate the intrinsic ability to generate func-
tional code. Barr et al. (2016) and Allamanis et al. (2018) have previously formulated
this exact observation after researching the distribution of code and its similarities with
natural language. Both domains are heavily influenced by reoccurring patterns and
structures that can be captured by statistical models - a concept encapsulated in the
naturalness hypothesis for code.

Revolutionary breakthroughs in NLP such as the development of the transformer
by Vaswani et al. (2017) and the subsequent release of Generative Pre-trained
Transformer (GPT) based models simutlanously opened up new avenues for the code
generation task. Notably, (M. Chen et al., 2021) published Codex, a model tailored
specifically for the coding task and precursor to GitHub’s Copilot. Leveraging the
naturalness of code, Codex is a GPT-3 model, originally designed for natural language
processing, that has been fine tuned for the coding task.
Following the emergence of new models designed specifically for the code generation
task, comes the demand for suitable evaluation metrics. Allamanis et al. (2018)
highlights during their formulation of the naturalness hypothesis that there is a lack of
well-suited and universally accepted evaluation metrics for the code generation task.
An issue that continues to be a subject of ongoing research. Until recently, models
created for coding tasks were still evaluated with methods designed for NLP. An
unhealthy evaluation practise that leads to the prioritization of linguistic capabilities
over coding proficiency. Code possesses distinct properties that warrant additional and
separate evaluation, despite being inherently connected to natural language through
the naturalness hypothesis.

(M. Chen et al., 2021) recognized this necessity for a code-specific evaluation by

2

1. Introduction 3

introducing a metric called HumanEval. HumandEval solely focuses on assessing
functional correctness by unit testing. Presently, code generation models primarily
operate within a narrow scope, focusing on functions and statements. For this use case,
evaluation based on NLP capabilities and functional correctness may suffice. However,
as future models advance their understanding and develop capabilities operate in class
or project level scopes, the current evaluation methods and their underlying metrics
needs to be reconsidered. Pursuing the notion of semantic, syntactical, and functional
correctness is essential, but it will not suffice to evaluate all the properties that code
should possess. Programs of this scale demand methods applied during the quality
assessment of large-scale software. It should be considered that future models would be
evaluated on the basis of quality indicators found in traditional software engineering.

This thesis answers the more general research question: "How do we measure the
quality of generated code". Furthermore it explores the possibilities of enhancing the
current metrics standards. The focus lies in finding potential metrics applied in quality
assurances of traditional software systems that could be used for the evaluation of
LLMs. As such, this thesis develops an answer to a subsequent research question: "Can
traditional software engineering metrics be used to assess the quality of generated code?"

2

Background

This section provides insights into the and their underlying theory of LLMs.

2.1 Code Naturalness

Statistical properties in natural language are leveraged in a diverse set of application
ranging from translation to error correction. Recent LLMs demonstrate what models
based on the statistical distributions of language can achieve in various contexts. Among
those numerous contexts, the generation of code plays an interesting role. Models
that are not specifically trained on code show capabilities of assisting and reasoning in
various code generation tasks solely based on the presence of code in their training set.
The question is where does this affinity of language models to naturally generate code
come from. Barr et al. (2016) , in their paper titled “Naturalness of Software”, suggests
that various statistical properties observed in natural language similarly apply to code.
Consequently, it can be rightfully assumed as it has been shown by M. Chen et al. (2021
) , that LLMs are capable of achieving proficient performance in code generation tasks,
given appropriate fine-tuning and training.

The idea of using the actual distribution of natural language corpora is the reason
for the abilities observed in today’s large language models. The shift from the typical
top-down approach where a method follows grammatical and syntactic rules towards
the more data-driven approach has been successfully applied to use cases such as
language translations. This success dates back many years to the 1980 (Jones, 1994

). Despite a potential for complexity, human communication tends to be simplistic
on average. This simplicity arises from the repetitive usage of terms and phrases,
implying that a basic set of vocabulary is sufficient for the transfer of information. In
the context of a normal conversation, it could be argued that it is preferable to use
easier-to-understand phrases and terms. Such arguments find their analogy in the
domain of software engineering, where simple-to-understand and readable code holds
greater value than complex and lengthy code. In that way, code shows many parallels
with natural language. Barr et al. (2016) and later Allamanis et al., 2018 have shown

4

2.1. Code Naturalness 5

that code possesses the same repetitive and recurring nature as natural language does.
Hence, it is also susceptible to the potential implications its probabilistic properties
hold. Repetitiveness and simplicity in the context of software engineering is even more
desirable since it enhances reusability, readability and maintainability.

Making the connection between code and natural language has already been pro-
posed by Prof. Knuth (Knuth, 1984). He suggests considering programming code as a
kind of literature and introduces the concept of writing code akin to human-to-human
communication.

"[...] considering programs to be works of literature. Hence, my title: “Literate
Programming.” Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what we want a computer to do.
The practitioner of literate programming can be regarded as an essayist, [...]"

Barr et al. (2016) rephrase this idea by introducing their hypothesis on "Code
naturalness":

"Programming languages, in theory, are complex, flexible and powerful, but the
programs that real people actually write are mostly simple and rather repetitive,
and thus they have usefully predictable statistical properties that can be captured in
statistical language models and leveraged for software engineering tasks."

(Allamanis et al., 2018) simplify even further:

"Software is a form of human communication. Software corpora have similar
statistical properties to natural language corpora and these properties can be
exploited to build better software engineering tools."

2.1.1 Code vs. Text

While exhibiting numerous parallels, code demonstrates significant disparities to natural
language. These distinctions have ramifications for both the generated code and the
underlying models used for the generation process. Recognizing these distinctions is
essential as they will impact the training and the evaluation. The following paragraphs
explain these differences closer.

At this juncture, the term "token" is defined, as it is frequently employed in the
following sections.

Token:
In the context of the LLM tokens present the basic units of read input and generated
output.
For natural language, tokens can be words, punctuation, etc. whereas for natural code
tokens can be function identifiers, keywords, operators, literals as well as punctuation.

6 2. Background

Neologism Natural code is suspect to a lot of neologism, for example in function
identifiers. But in comparison with natural language it holds a considerably smaller set
of tokens. On one hand, neologism can impact the evaluation of a model. Generated
code normally differs syntactically from a reference solution but does not so semantically.
On the other hand, it can be argued that the presence of neologisms promotes the
significance of often encountered keywords like function, class, public, etc. This changes
the way the model generates a solution.

Versioning Code and their programming languages are updated punctually. The
differences in language versions can lead to potential problems while prompts are
interpreted and code is generated. Certain functionalities might only be provided by
a certain language version. In contrast, natural language changes dynamically and
gradually. Depending on the problem domain a model needs to facilitate the newest
functionality or understand legacy assignments. With time such new versions and
functionality can be integrated into future iterations of a model.

Execution Code is executable and carries potential real-life implications which can
pose risks. The biggest risk arises in automatic execution of generated code, as it is
needed in certain evaluation frameworks, such as functional correctness trough unit
testing. Similarly to the training corpora of natural language, it is to assume that code
corpora can contain malicious examples which make the model theoretically capable of
generating malicious code. It is crucial to be aware of this fact while creating evaluation
frameworks. Systems that execute these tests must acknowledge the threat by implement
preemptive actions such as ensuring the execution in a secure environment.

Semantic robustness Code lacks the semantic robustness of natural language. Robust-
ness is less significant in natural language as minor alterations of mistakes normally do
not overly alter the semantic meaning. In the domain of programming, such alterations
could drastically affect the functionality of the program.

Modern LLMs focusing on the task of code generation must consider these points
by having appropriately selected training data, as well as meaningful evaluation frame-
works that can account for semantic robustness, malicious code, and neologisms.

2.2. Models 7

2.2 Models

In this section, we delve into the evolution of models that have been and are used for
code generation, from simple n-grams to the transformer introduced in 2017. Focus lies
on the importance of understanding the capabilities of newer generations, and how they
differ to previous versions.

The second part of this sections present some data for the widely successful trans-
former models, illustrating the progress that has been achieved in a short amount of
time.

2.2.1 Model basis

Most models use the probabilistic distribution of code to generate a sequence of tokens.
Sequences are created by merging tokens while calculating the probability of the current
token based on previously occurring tokens.

𝑃(𝑡𝑛 |𝑡1 , . . . , 𝑡𝑛−1) (2.1)

N-gram One of the well-known specific token-based models is the n-gram model,
which finds its particular use as a language model and is the basis of a large number
of evaluation metrics for the NLP. N-grams are able to find statistical dependencies
in sequences quite easily by using the probabilistic distribution noted above 2.1 for
each token in the sequence. Such a model can generate text and code by following the
observations made on patterns in a training set. They are simple and powerful but
tend to fall behind other techniques in regard to long-ranged dependencies, meaning
they will have difficulties connecting information from the end of a prompt with the
beginning.

RNN Recurrent Neural Network (RNN)s are also models used for token generation.
These models are not as context-restricted as n-grams tend to be. RNNs can better
capture long-range dependencies in their hidden layers and are therefore well equipped
to outperform the more localized scope of n-grams. On the other hand, the construction
of RNN is more involved and demands a larger amount of data and training time.

Encoder / Decoder Cho et al. (2014) introduced the encoder-decoder architecture
to improve the performance of statistical machine translation such as the translation
from English to French and vice versa. The architecture proposes the use of two
RNNs, one acting as an encoder, mapping variable-length token sequences to a fixed-
length intermediate vector representation, while the second RNN decoding the vector
representation back to a variable-length sequence. Encoder-decoder models can capture
word and phrase regularities on syntactic and semantic levels.

8 2. Background

Transformer Vaswani et al. (2017) criticizes the long-range dependency problem in
encoder-decoder models. Models suffering from long-range dependency problems are
not well suited to connect input information with a large positional distance between
them. As such this feat is hard to achieve with RNNs as shown in Kolen et al. (2001
) . Attention algorithms have been introduced to address the long-range dependency
problem. This method adds an attention-based representation to input sequences
capturing the relations of key tokens and their importance in the sequence. This method
has been applied successfully to encoder-decoder models. Transformer models solely
use attention mechanisms and do not rely on any recurring or convolutional layers to
capture the dependency of input and output sequences. As such they are faster and
more efficient and in the translation case mentioned in Vaswani et al. (2017) and they
outperformed other models based on RNNs.
The recent models that have garnered a lot of attention are based on exactly that attention
based transformer method.

2.2.2 Model sizes

Models have been growing in capability and size over the recent years. This means
newer models requires more financial and computational resources than previous ones.
There is a stark gap between closed and closed-sourced models, with the performance
of closed-sourced models clearly in the lead and open-sourced models playing catch up.
Two major companies, Google and OpenAI, are leading the closed-source models, as
illustrated in the following figures. While the best-performing models are generally not
freely accessible, there has been some effort from open-source communities and enter-
prises like Meta to create transparent and pre-trained models. Especially noteworthy
are collaborative initiatives from multiple researchers such as the creation of BLOOM
(Workshop et al., 2022) in 2022.

To demonstrate the general growth of the model sizes this paper explains size in-
dicators and presents graphical illustration showing different models and their sizes.

Parameter count indicates the capability of learning and expressing more complex
relations on data. It is not implicitly true that higher numbers in parameters count will
lead to a better performing model. But the potential and adeptness of such models are
generally higher. Size and cost optimization allow for smaller and smaller models that
can outperform their larger predecessors. It is crucial to note that multiple versions
with different parameter counts of the same model exist. Different sizes are intended
for different use cases.

Context window length indicates the number of tokens a model can take as input.
It describes the size of the input/output sequence a model can operate on. In general
context length indicates the information and dependency a model can operate on. While
a larger context size can be beneficial and produce more sophisticated answers it is also

2.2. Models 9

directly connected to a higher cost in training.

A series of models and their parameter count and token window size is illustrate in
Table 2.1 and in shown in Figure 2.1 and Figure 2.2.

Table 2.1: Parameter count and token window size per model and year.

Year Producer Model Parameter Token Window
109 103

2018 Google BERT 1 0.34B -
Devlin et al. (2019)

2019 OpenAI GPT-22 1.5B 1K
Alec et al. (2019)

2020 OpenAI GPT-3 175B 16K
Brown et al. (2020)
OpenAI Platform Documentation (n.d.)

2022 Google PalmE 540B -
Driess et al. (2023)

2022 BigScience BLOOM 176B -
Workshop et al. (2022)

2022 Facebook LAMA 65B 2K-4K
Touvron et al. (2023b)

2023 Facebook LAMA2 70B 32K
Touvron et al. (2023a)
S. Chen et al. (2023)

2023 Mistral AI Mixtral 8x7B 12.9B 32K
Jiang et al. (2024)

2023 OpenAI GPT-4 - 128K
OpenAI Platform Documentation (n.d.)

2024 Google Gemini - 128K - 1000K
Google AI Blog (n.d.)

10 2. Background

Figure 2.1: Parameter count of various open and closed source models

Figure 2.2: Token window size for various open and closed source models

3

Methodology

This thesis answers the following to research questions:

How do we measure the quality of generated code
Can traditional software engineering metrics be used to assess the quality of generated code?

This section describes the applied methodology to find relevant research. Several
techniques were used.

1. Search by string
2. Snowballing
3. Direct search

Search string

The general research topic for this thesis can be summarized in the question: How do we
measure the quality of generated code? To find relevant connected papers a search based
on keywords has been initiated. Several search iteration with different variations of
keywords from the research topic has been used to find suitable articles on the MIAGE
scholar platform (Scholar MIAGE n.d.). The final search string resulting in 99 papers is
presented below 1.

1 Moment of writing: March 2023

11

12 3. Methodology

(TITLE-ABS-KEY("quality") OR TITLE-ABS-KEY("score") OR
TITLE-ABS-KEY("benchmark") OR TITLE-ABS-KEY("metrics"))

AND
(TITLE-ABS-KEY("evaluation") OR TITLE-ABS-KEY("measurement") OR

TITLE-ABS-KEY("classification"))
AND

(TITLE-ABS-KEY("code generation"))
AND

(SUBJAREA("COMP"))
AND

PUBYEAR > 2020

The first three parts of the query represents logical OR keywords. The first is a
variation of the key word quality. The second part follows the same structure for the key
word measure, while the third key word generated code is precise enough not to necessitate
further variations. The three query parts are combined with a logical AND describing
that at least one key word of each part needs to be present in either title, abstract or
keyword of any potential result. Finally the query is restricted by the research area of
computer science and publications dates are limited to at least 2020.

Further selection on the initial set has been done by inspecting titles and abstracts
as well as keywords of the papers. Additionally, only freely accessible articles have been
considered initially.

Snowballing

Reading the first few articles were inspiring and initiated the reevaluation of the current
selection. It was clear that most of the articles based their findings on previously estab-
lished results by other authors. As such with the snowballing technique of reference
searching the initial papers were found. This selection would built the foundation of
this thesis.

Reference search was a fortuitous endeavor, since it showed that the second research
question this paper aims to answer only found little to none attention in the research
community so far.

Direct search

The second question of this thesis is related to traditional software metrics. No keywords
have been included in the search string concerning this particular topic nor was any
research found that was directly working on the same area. As such, relevant papers in
the domain of software metrics have been directly search.

3. Methodology 13

Putting it together

Finally these three methods resulted in the articles that build the basis for this thesis.
Search strings included papers discussing automated Natural Language Processing
(NLP) metrics as well as established functional correctness techniques. Snowballing on
these papers revealed the concept of Code naturalness and the additional direct search
helped integrate well known traditional software metrics.

14 3. Methodology

Figure 3.1: Research methodology

4

Results

In the results or this thesis the various methods currently used in evaluating code
generation models are presented. Evaluation is essential in research, as it provides the
means to understand the capabilities of existing models and clearly identifies areas
requiring further improvements. As such, Section 4.1 answers the research question
"How do we measure the quality of generated code?" whereas Section 4.2 answers the second
research question "Can traditional software engineering metrics be used to asses the quality of
generated code?".

At this point concepts concerning the evaluation task for code generation are defined.

Evaluation set
An evaluation set is the set of task that is used to measure the performance of a model

Evaluation metric
An evaluation metric is the quantifiable value used to assess the performance of a
model. It can be described as a quantifier that compares a generated solution against
the reference solution of a given task.

4.1 Existing evaluation

The following sections present existing evaluation methods and gives more context how
they asses code. An overview of those metrics can be found in Table 4.1

4.1.1 NLP Methods

BLEU (Bilingual Evaluation Understudy)

Interestingly enough, for the comparison of code generation models NLP methods such
as BLEU (Papineni et al., 2002) are used. BLEU is intended to evaluate machine
translation from one natural language to another by using metrics that use calculation

15

16 4. Results

over n-grams for generated and reference solutions. The BLEU method is described by
the following: “The closer a machine translation is to a professional human translation, the
better it is”.

BLEU uses a numerical metric based on n-gram precision to calculate a score that
indicates closeness of a generated solution to a reference solution.

𝑝𝑛 =
|𝑆𝑛

ref ∩ 𝑆𝑛
gen |

|𝑆𝑛
ref |

(4.1)

Where

𝑆𝑛
ref = set of n-grams of the reference solution

𝑆𝑛
gen = set of n-grams of the generated solution

In other words, the 𝑝𝑛 is calculated by dividing the total number of overlapping n-grams
between the generated solution and the reference solution by the total number of
n-grams in the reference solution.

Additionally a Brevity penalty factor is used to account for the penalty of short generated
solutions. If their length is significantly smaller than its reference solution, their score is
also suffering.

BP =

1 g > r

𝑒
(1− r

g) otherwise
(4.2)

Where

𝑔 = length of generated solution

𝑟 = length of reference solution

The final BLEU metric is then described as:

BLEU = BP · exp

(
𝑁∑
𝑛=1

𝑤𝑛 log
(
p𝑛

))
(4.3)

Where

generally 𝑤𝑛 =
1
𝑁

ROUGE

ROUGE (Lin, 2004) is another metric based on n-grams and originally intended for the
natural language domain, especially its variation ROUGE-L. It focuses on the longest
common sub sequence between the proposed and reference solution, where longer sub
sequences indicate closeness to the human standard.

4.1. Existing evaluation 17

ROUGE-L uses precision and recall

𝑅(𝐺, 𝑅) = LCS(𝐺, 𝑅)
len(𝑅) , 𝑃(𝐺, 𝑅) = LCS(𝐺, 𝑅)

len(𝐺) (4.4)

Where

𝐺 = Generated solution

𝑅 = Reference solution

𝐿𝐶𝑆 = Longest common sub sequence

to calculate the overall metric:

ROUGE𝐿(𝐺, 𝑅) = 2 · 𝑃(𝐺, 𝐻) · 𝑅(𝐺, 𝐻)
𝑃(𝐺, 𝐻) + 𝑅(𝐺, 𝐻) (4.5)

chrF

chrF (Popović, 2015) is a character-level metric intended for machine translation. It
differs to the before seen metrics by using every character to create its measurement.
It follows the same calculation as ROUGE-L but substitutes the n-gram context with
character level.

chrF(𝐺, 𝑅) = 2 · 𝑃chr(𝐺, 𝐻) · 𝑅chr(𝐺, 𝐻)
𝑃chr(𝐺, 𝐻) + 𝑅chr(𝐺, 𝐻) (4.6)

Some papers use these method to claim the superiority of certain models over others.
In the context of natural language, it is feasible to use such techniques to measure the
effectiveness of language models. Likewise, such techniques are undoubtedly useful
to measure language models built to generate code. Studies like (Evtikhiev et al.,
2023) propose that evaluation metrics designed for natural language are applicable
to code-generating models, but it is questionable to solely depend on such scores to
benchmark the models and rank them against each other.

Drawing on the conclusions found in the section about the naturalness of code Sec-
tion 2.1, there are theoretically significant arguments that metrics developed to evaluate
natural language should only find limited use in the evaluation of generated code. For
instance, comparing model capabilities on behalf of their BLEU score poses issues with
semantic robustness. Changing or leaving out an important code element can lead to a
higher BLEU score for one model over the other, while changing the functionality of
the generated code. Such behavior favors a logically incorrect model over a correct one.
Additionally, BLEU ignores the importance of individual words and therefore cannot
account for keywords such as function, class, or public.

Logically, all evaluation metrics originating from the NLP domain are predominantly

18 4. Results

used for evaluating machine translation or other processes in natural language. All
suffer from similar limitations when applied to models focused on code generation.

4.1.2 NLP Metrics & Naturalness of Code

Several metrics were introduced that address the shortcomings of BLEU and otherNatural
Language Processing evaluation methods. These metrics use NLP as a stepping stone
and account for some of the differences of text and code introduced in Section 2.1.

These metrics make use of specific representations of code such as:

Abstract Syntax Tree (AST)
AST is a hierarchical tree-like representation of the syntactic structure of code. It is
commonly used in compilers and interpreters.

Abstract Semantic Graph (ASG)
ASG is a graph-based representation of the semantic meaning of code. It captures
higher-level concepts and relationships beyond the syntactic structure represented by
AST.
(Also called dependency graph or data flow in the subsequent sections)

codeBLEU

Ren et al. (2020) creates the methode codeBLEU and establishes a better correlation to
the coding domain, by integrating Abstract Syntax Trees and Abstract Semantic Graphs,
as well as an n-gram matches like BLEU does.

The AST representation of the generated and reference solution is used to calculate the
syntactical closeness. It is an indicator for the code quality, since it catches syntactical
errors such as missing tokens or identifier mismatches in the AST.

Matchast =
count(𝑇gen)
count(𝑇ref)

(4.7)

Where

count(𝑇gen) = Number of sub-trees of the generated solution

count(𝑇ref) = Number of sub-trees of the reference solution

The Abstract Semantic Graph (ASG) or data flow measures the semantic similarity and
subsequently a way to measure semantic closeness between generated and reference
solution.

4.1. Existing evaluation 19

Matchdf =
count(𝐷𝐹gen)
count(𝐷𝐹ref)

(4.8)

Where

count(𝐷𝐹gen) = Number of data flows of the generated solution

count(𝐷𝐹ref) = Number of data flows of the reference solution

The data flows are obtained by identifying all variables in the AST and representing them
as nodes in the data flow graph. An edge is created between two nodes if one variable
is created by or dependent on another. The resulting graph shows the relationships
between all the variable of the code in question.

Finally the codeBLEU metric is mathematically described as:

codeBLEU = 𝛼 · BLEU + 𝛽 · BLEUweight + 𝛾 · Matchast + 𝛿 · Matchdf (4.9)

Where

BLEU = Standard BLEU

BLEUweight = BLEU with different weights𝑤𝑛

Matchast = Syntactic AST match

Matchdf = semantic data flow or ASG match

RUBY

RUBY (Tran et al., 2019) is an ensemble metric and focuses on tree similarity, graph
similarity and string similarity. It is a three parted metrics that uses edit distance be-
tween generated and reference trees as the underlying method to calculate the differences.

String similarity:

𝑆𝑇𝑆(𝐺, 𝑅) = 𝑆𝐸𝐷(𝑆𝑅 , 𝑆𝐺)
𝑚𝑎𝑥(𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑅), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐺))

(4.10)

Where

𝑆𝑅 = Reference string sequence

𝑆𝐺 = Generated string sequence

𝑆𝐸𝐷(𝑆𝑅 , 𝑆𝐺) = Edit distance between𝑆𝑅 and 𝑆𝐺

Tree similarity:

𝑇𝑅𝑆(𝐺, 𝑅) = 𝑇𝐸𝐷(𝐴𝑆𝑇𝑅 , 𝐴𝑆𝑇𝐺)
𝑠𝑖𝑧𝑒(𝐴𝑆𝑇𝑅) + 𝑠𝑖𝑧𝑒(𝐴𝑆𝑇𝐺))

(4.11)

20 4. Results

Where

𝐴𝑆𝑇𝑅 = Reference abstract syntax tree

𝐴𝑆𝑇𝐺 = Generated abstract syntax tree

𝑇𝐸𝐷(𝑆𝑅 , 𝑆𝐺) = Edit distance between𝐴𝑆𝑇𝑅 and 𝐴𝑆𝑇𝐺

𝑠𝑖𝑧𝑒(𝐴𝑆𝑇𝑋) = Number of nodes in a AST

Graph similarity:

𝐺𝑅𝑆(𝐺, 𝑅) = 1 − 𝐺𝐸𝐷(𝑃𝐷𝐺𝑅 , 𝑃𝐷𝐺𝐺)
𝑠𝑖𝑧𝑒(𝑃𝐷𝐺𝑅) + 𝑠𝑖𝑧𝑒(𝑃𝐷𝐺𝐺))

(4.12)

Where

𝑃𝐷𝐺𝑅 = Reference program dependence graph

𝑃𝐷𝐺𝐺 = Reference program dependence graph

𝐸𝐷(𝑆𝑅 , 𝑆𝐺) = Edit distance between𝑃𝐷𝐺𝑅 and 𝑃𝐷𝐺𝐺

𝑠𝑖𝑧𝑒(𝑃𝐷𝐺𝑋) = Number of vertexes in a PDG

Finally the ruby metric is the ensemble of the these three sub-metrics:

𝑅𝑈𝐵𝑌(𝐺;𝑅) =

𝐺𝑅𝑆(𝐺, 𝑅), if 𝑃𝐷𝐺𝑠

𝑅𝑆(𝐺, 𝑅), if 𝐴𝑆𝑇𝑠
𝑆𝑇𝑆(𝐺, 𝑅), otherwise

(4.13)

The presented metrics aim to tackle the challenge of code-specific evaluation by in-
corporating syntactic and semantic features of code, such as AST and ASG into their
computation. These metrics represent a promising advancement in automated evalua-
tion, leveraging characteristics from both natural language and code domains. However,
a critical aspect remains unresolved: assessing whether the code fulfills its intended
functionality.

4.1.3 Functional Correctness

Automated metrics like BLEU attempt to approximate the human standard and measure
the similarity to the optimal code reference. However, the crucial property of functional
correctness cannot be adequately addressed by either the original NLP metrics nor the
more code-specific metrics discussed in Section 4.1.1 and Section 4.1.2.

Function-level

M. Chen et al. (2021) acknowledge the importance of evaluating and testing for
functional correctness and introduce the evaluation metric HumanEval alongside the

4.1. Existing evaluation 21

Codex model, the precursor to Github Copilot. HumanEval is a manually-created
metric, with originally 164 hand-crafted evaluation problems with an average of 7.7 unit
tests for each. It is intended to evaluate the Codex, which is intended for the coding
domain.

Similarly, Hendrycks et al. (2021) introduces APPS, another metric based on the same
idea of measuring code by running unit tests against it. APPS represents a significantly
wider accumulation of coding problems primarily based on open-source data from
coding websites. The scope of the included problems has a wider range and integrates
several difficulty levels.

Austin et al. (2021) produces another function-level metric called Mostly Basic
Programming Problems (MBPP). MBPP consists of 974 entry-level Python functions
with associated unit tests.

As seen in this section, multiple benchmarks follow the approach of implementing
hand crafted testing frameworks. They deliberately are taking a step back from the
automation principles that pushed the development of BLEU in the early 2000s. All
in all, metrics such as HumanEval, MBPP or APPS are well established in the research
communities. They are well positioned to fully evaluate function level code. But pushing
the boundaries for code generating models beyond this initial stage will need larger
scaled tasks such as classes or even repository/projects. Models should not only be
trained on such use cases, but the evaluation metrics that are able to capture and assess
them need to be created as well. Recent research has initiated the groundwork to start
an evaluation in a larger context in the form of classes.

Class level

Du et al. (2023) recognizes the need to broaden functional correctness to larger
scales and introduces the evaluation metric CLASSEVAL. This metric focuses on class-
level evaluation and consists of 100 class-level problems for Python, each with the
corresponding class-level testing. While the metric operates in the same manner as
other metrics such as HumanEval, the scale differs considerably. HumanEval typically
averages on 11.5 lines of code or 67.7 tokens, whereas CLASSEVAL averages on 45.7 lines
of code and 259.3 tokens. Consequently, evaluating existing models using CLASSEVAL
reveals notably lower performance in class generation tasks.

22 4. Results

Table 4.1: Existing evaluation methods and metrics

Name Measures Metric Ref
NLP

BLEU Similarity Precision 4.1.1
Rouge-L Similarity Precision, Recall 4.1.1
chrF Similarity Character level Precision, Recall 4.1.1

NLP & Code Naturalness
codeBLEU Similarity Precision 4.1.2

Syntactic correctness AST
Semantic correctness Data Flow graph

RUBY String similarity String Edit distance 4.1.2
Syntactic correctness AST Edit distance
Semantic correctness Dependency graph Edit distance

Functional correctness
HumanEval Function-level correctness Unit testing 4.1.3
APPS Function-level correctness Unit testing 4.1.3
MBPP Function-level correctness Unit testing 4.1.3
CLASSEVAL Class-level correctness Unit testing 4.1.3

4.1.4 Current state of evaluation metrics and the lack thereof

Numerous studies assess and compare different models based on their results of the
above-mentioned metrics. Evtikhiev et al. (2023) does an exhaustive study on the
validity on metrics originating from the NLP domain and finds them generally lacking
for an accurate model comparison. Allamanis et al. (2018) already states in the
beginning of the exploration of Transformer models in 2018 that the current suite of
evaluation metrics for the code generation task is lacking.

They clearly encourages researchers to study new and appropriate manners to evaluate
code. Functional correctness is the right direction, but it reaches its zenith in its current
form. An evaluation metric remains valuable only as long as there is still potential
for improvement in the models that are evaluated by it. Once a certain threshold is
reached, the significance of evaluating a model based on that specific metric diminishes.
Instead, novel methods for measuring improvement must be explored. For instance, lets
assume a LLM achieving near-perfect functional correctness on the HumanEval metric.
Further evaluation solely based on that functional correctness metric becomes less
meaningful, prompting the need for alternative evaluation sets. Shifting to a different
metric that adheres to similar principles or introducing new problems and testing cases
only partially addresses the issue. There’s a limit to the amount of such variation that
can be introduced to make a significant difference for a model to still gain valuable
insights from the metric.

4.1. Existing evaluation 23

As of the moment of the conception of this paper, models like GPT-4 or Googles
Gemini can solve around 76% of HumanEval problems successfully (Gemini Team et al.,
2023). Recently, Huang et al. (2023) demonstrated that a combination of GPT-4
models can successfully solve 96.3% of HumanEval’s problems. While this achievement
is impressive and marks a significant advancement, it also signals that evaluation metrics
such as HumanEval have served their purpose well but are approaching the critical
moment where they will not be able to push the advancement of the code generation
task any further.

Current metrics still play a vital role in assessing and ranking existing models and will
continue to do so for the future, especially as smaller and more efficient models find
their role in the industry. Nonetheless there’s a clear need for more appropriate metrics
to accommodate front running models. Research efforts should be directed towards
addressing larger problem domains, following examples such as CLASSEVAL, which
identified potential areas for improvement in the functional correctness for class level.
This widens the research field and encourages researchers to focus on more complex
tasks with more dependencies. By pushing to surpass the current scope of single
functions or statements in the evaluation research, the capabilities of code generating
models will hopefully follow suite.

This section answered the question : How do we measure the quality of generated code. An
overview of commonly used metrics can be found in Table 4.1.

24 4. Results

4.2 Software Engineering metrics

This section explores the domain of traditional software metrics answering the second
research question: "Can traditional software engineering metrics be used to assess the quality
of generated code?".

The research community recognizes the lack of well suited evaluation methods for code
generating models and is turning towards alternatives, such as evaluation methods
involving human-created techniques. HumanEval, APPS and MBPP are well known for
prioritizing functional correctness on function level. This shift demonstrates the willing-
ness of researchers to accept the additional efforts of manually create and administer
evaluation frameworks, provided they enhance the quality of the evaluation.
Recently Huang et al. (2023) demonstrated unseen performance on HumanEval by
solving over 96% of the provided problems and their unit tests. This progress shows
that metrics concentrating on functional correctness of function level coding tasks such
as HumanEval have potentially hit their ceiling regarding their usefulness to evaluate
state of the art models and techniques. One way is to widen the scope of the generated
code to class level, as proposed by Du et al., 2023 . While providing a way to further
explore the evaluation based on functional correctness, class level coding tasks allow to
integrate other quality measurements found in software engineering.

At this point concepts concerning the evaluation task by traditional software engi-
neering are defined.

Quality indicator
A quality indicator is a higher-level concept that describes certain aspects of software.
Generally such indicators are quantifiable through one or more underlying metrics.

Software metric
A software metric is the quantifiable value used to assess the quality of code. It normally
is associated with one or multiple quality indicators.

This sections aims to showcase the feasibility of utilizing software metrics and their
quality indicators as valid evaluation metrics for the code generation task.

4.2.1 Quality indicators

The study of software quality has produced multiple well-documented definitions of
what constitutes good software. Concepts such as the SOLID principles (R. Martin,
2000) guide today’s software engineering practices. This paper orients itself on
these principles and leverages the underlying quality indicators of the aforementioned
principles.

4.2. Software Engineering metrics 25

4.2.2 Extraction

In the following section the five SOLID principles (R. Martin, 2000) are further inspected
and the correlating quality indicators are extracted and highlighted at the end of each
paragraph.

Single Responsibility Principle (SRP)

"A class should have one, and only one, reason to change"

The principle ensures that a module or class only has one specific responsibility and
that changes do not originate from the domain of other responsibilities.

Robert C. Martin clarifies and explains the principle in a blog post in 2014:

If you think about this you’ll realize that this is just another way to define cohesion
and coupling. We want to increase the cohesion between things that change for
the same reasons, and we want to decrease the coupling between those things that
change for different reasons. - R. C. Martin (2014)

Cohesion | Coupling

Open-Closed Principle (OCP)

"A module should be open for extension but closed for modification"

This principle states, that a module should be changeable without changing its current
composition. The key for this principle is abstraction and can be done by using an
interface for example.

Consider the following example:
A class animal has a function makeSound. For different animals the makeSound function
should produce different sounds. Every time a new animal is created the animal class
would need to be adjusted with the new sound for the new animal. Imagining 100
animals to be added. This would make this class undesirably hard to maintain. The Open-
Closed Principle states that the original animal class should not be modified. Instead an
animal should be able to implement its own makeSound functionality. This is achieved
by making the animal class abstract, allowing others to extend its functionality. This
drastically reduces complexity and an animal interface can be reused for an unrestricted
number of different animals.

Modifiability | Extensibility | Maintainability | Complexity | Reusability

26 4. Results

Liskov Substitution Principle (LSP)

"Subclasses should be substitutable for their base classes."

This principle states that that anyone who uses a class should also be able to be working
with a subclass.

Example:
Consider an object of type cook that has the functionality prepareFood. PrepareFood
uses an object of type animal. The Liskov Substitution Principle states that a cook should
be able to continue to use prepareFood for any sub type of animal. As such the cook will
be able to prepareFood with the derived type duck. This behavior makes the situation
easier to maintain. The cook will be able to extend his capabilities to prepareFood by
treating new kinds of animals without having to change his behavior specifically for a
sub type.

Modifiability | Extensibility | Maintainability

Interface Segregation Principle (ISP)

"Many client specific interfaces are better than one general purpose interface "

The principle dictates to split up large interfaces. Objects relying on an interface should
not be forced to rely on functionality they do not use.

Example:
The example restaurant can be separated into two services. The front facing one would
be the customer service part. This is where a customer object orders, eats and pays for
their meal. The other service is the back facing one where the cooks prepare the meals.
With ISP the two services are clearly separated. Apart from getting the order, the cooking
portion does not need any other interaction with customer. The two services can change
things around without impacting the other one. For example would the rearranging
of tables in the front facing service of the restaurant not impact the operation in the
kitchen. Maintenance becomes easier since one can be addressed without influencing or
touching the other.

Modifiability | Maintainability

Dependency Inversion Principle (DIP)

"Depend upon Abstractions. Do not depend upon concretions."

DIP promotes to inherit from abstract classes or interfaces and not from concrete one. The
reason is simple, namely concrete class tend to change more frequently in comparison

4.2. Software Engineering metrics 27

with abstract classes. Abstract classes are intended to provide common functionality
and stability in software by design.

Example:
Assuming there are multiple different cooks, like a cook specialized on grilling on, one
on steaming, etc. This would be implemented with an abstraction of base type cook and
specializations would be deriving from it. A restaurant directly stating that is using a
grilling cook would go against the Dependency Inversion Principle since the restaurant
would be depending on a concrete type of cook. Consequently, modifying the restaurants
cook type, for example when seasons change, would be challenging. In this scenario,
each different restaurant with a different type of cook would need a separate definition.
This makes the situation more complex. To easily change or extend the options in cooking
a restaurant should depend on the abstract class cook. Relying of reusable restaurant
setups and the usage of any sub type of cook.

Modifiability | Extensibility | Maintainability | Complexity

Other quality indicators

This study includes another important quality indicator. Readability is closely connected
to code naturalness since it is and indicator for how fluently and understandable written
code is. It follows certain conventions and is measured by a multitude of metrics. It will
be referenced throughout the section about Traditional metrics 4.2.4 and Code smells
4.2.5.

Readability

It is worth mentioning that there are other quality indicators to consider, such as
scalability or efficiency. While presenting interesting future research topics, the integration
of such metrics is not in the scope of this paper.

4.2.3 Resulting indicators and considerations

Seven quality indicators have been extracted in the previous section. Collectively, these
indicators contribute to standardizing and controlling the quality of software code in
the OOP domain.

Table 4.2 lists the selection of indicators this paper focuses on. The set is intended to
capture the most important, higher level programming concepts.

28 4. Results

Table 4.2: Quality indicators

Indicator Description

Complexity Indicator on how complicated code is and how interconnected the
components and classes are

Maintainability Indicator for how easy it is to maintain given code. This is mostly
an accumulation of one or more characteristics such as readability,
modifiability, and extensibility

Readability Indicator on how easy it is for a human to read code. It is a combi-
nation of structure, formatting and other general code naturalness
indicators such as the choice of function names

Modifiability Indicator on how easy changing code is
Extensibility Indicator on how easy it extending code is
Cohesion Indicator for the strength of the relationships among objects
Coupling Indicator for the coupling among components and classess

4.2.4 Software metrics

Software metrics refer to well-researched code quality measurements with a history of
wide practical application in the field of computer science. For example, McCabe (1976)
introduced Cyclomatic Complexity (CC) nearly 40 years ago and it has been consistently
utilized to assess software quality ever since. These metrics are described by a rigorous
mathematical approach either with empirical measurements of code properties or the
use of graph theory. These metrics are commonly employed in software engineering and
offer a wealth of insights since they build the mathematical basis for the code quality
indicators mentioned in the previous section.

This section presents candidates in the form of software metrics. All candidates
must adhere to the following inclusion criteria:

All potential metric candidates must be:

1. deterministically quantifiable
2. assignable to at least one quality indicator Table 4.2

As during the extraction of quality indicators, the domain of OOP has been chosen
to find viable metrics to directly assess the quality of code. The domain has been widely
explored and operates clearly within the class level functionality. This presents a suitable
problem domain for future coding models. This paper orientates itself on the references
of the systematic mapping study conducted in Nuñez-Varela et al. (2017) . The study
lists reference of traditional metrics in recent literature and highlights the relevancy of
the chosen candidates.

The following paragraphs present the metrics with short explanations and mathe-

4.2. Software Engineering metrics 29

matical formulas. A summary with mappings to quality indicators can be found in
Table 4.3 . A large number of the following metrics originate from the following paper
Chidamber et al. (1994) .

Cyclomatic Complexity (CC) McCabe (1976) firstly introduced this metric. It
quantifies the number of possible paths the tree representation of a programs control
flow also known as Abstract Syntax Tree. The calculation determines the difference
between the number of edges and the number of nodes in the AST and adding the
number of different program entry points.

𝐶𝐶 = 𝐸 − 𝑁 + 2𝑃 (4.14)

Where:

𝐸 : Number of edges

𝑁 : Number of nodes

𝑃 : Number of connected components (entry points)

It is an indicator for complexity and is one of the most used metrics in any given software
measurement framework. It is applicable to higher level construct such as classes as
well as lower level functions. It pinpoints sections in need of refactoring and influences
directly other indicators such as maintainability, readability and modifiability. It further
impacts development through its implications regarding testing complexity.

Weighted Methods per Class (WMC) This metric defines this complexity measurement
metric leveraging other complexity metrics. It is an ensemble metric that assigns weights
to each class function, for example, by calculating its CC (Equation 4.14). The subsequent
sum of those weights indicates the overall complexity of a class.

𝑊𝑀𝐶 =
∑
𝑓 ∈𝐶

𝐶𝐶(𝑓) (4.15)

Where:

𝑓 : Function

𝐶 : Class

𝐶𝐶(𝑓) : Cyclomatic Complexity of 𝑓

Large and complex functions are hard to understand. The accumulation of such
functions in a class is very time consuming in regards to readability and maintainability.

Coupling between Objects (CBO) Measures the dependencies between different
classes based on attributes and methods. The higher the coupling rate of different classes
the more interwoven the structure of the software. It indicates high complexity and

30 4. Results

dependency between classes and therefor heightened maintainability, modifiability and
extensibility costs.

𝐶𝐵𝑂(𝐶) = Number of other classes 𝐶′ the class 𝐶 is coupled with (4.16)

Lack of Cohesion in Methods (LOCM) Describes how strongly methods in a class or
module relate to each other.

Consider a class with 𝑛 methods

𝑀1 , 𝑀2 , ..., 𝑀𝑛

For each of the methods we define the set of class properties used by that method as

{𝐼𝑖} = set of class properties used by the method 𝑖

Now we define the two sets 𝑃 and 𝑄 that describe the set of methods that do not have
any class property in common and respectively the set of methods that do.

𝑃 = {(𝐼𝑖 , 𝐼𝑗)|𝐼𝑖 ∩ 𝐼 𝑗 = ∅}
𝑄 = {(𝐼𝑖 , 𝐼𝑗)|𝐼𝑖 ∩ 𝐼 𝑗 ≠ ∅}

𝐿𝑂𝐶𝑀(𝐶) =

|𝑃 | − |𝑄 | , if |𝑃 | > |𝑄 |
0 , otherwise

(4.17)

In other words, metric calculates the difference between the number of method pairs
that do not use the same class properties with the number of method pairs that do use
the same properties.
Low LOCM describes the case where the methods do make use of the same properties
and therefore follow the same purpose and work well together, i.e have a high cohesion. In
the opposite case, high LOCM shows that a class is to complex with a high maintainability
and should be considered for being split up.

Depth of Inheritance Tree (DIT) This metrics calculates the depth of the inheritance
tree. The larger the tree in general the harder extensibility and maintainability for the
classes within will become. Classes at the bottom tend to inherit a great number
of functions and properties from their parent classes, making them impacting their
readability.

𝐷𝐼𝑇(𝐶) = Depth of class 𝐶 in the inheritance tree (4.18)

4.2. Software Engineering metrics 31

Lines of Code (LOC) Counts the number of lines in different manners. This metric
can be split up into Physical Lines of Code (PLOC) and Logical Lines of Code (LLOC).
PLOC counts the total number of all lines, comments and blanks included. LLOC on
the other hand counts only executable code.

𝑃𝐿𝑂𝐶 = total number of all lines (4.19)

𝐿𝐿𝑂𝐶 = counts only executable code (4.20)

𝐿𝑂𝐶 = 𝑃𝐿𝑂𝐶 + 𝐿𝐿𝑂𝐶 (4.21)

These metrics are both insightful and simple. Generated code could be measured against
a reference solution’s number of lines of code to see how close it is to an optimal solution.
More precisely, it can be used as an indication of the minimal amount of lines of code
needed to solve a given problem. Too large numbers of lines of code can negatively
impact readability of the code base.
PLOC in particular can have negative impacts regarding complexity and maintainability.
Especially comments can make code more complicated and hard to read. For instance,
when changes are made and comments are not or wrongfully updated.

Number of Children (NOC) Measures the amount of children a certain class has.

𝑁𝑂𝐶(𝐶) = Number of sub classes 𝐶′ of a class 𝐶 (4.22)

High numbers are indicators for high coupling and complexity as well as dependence of
sub classes towards their parent class. This restricts modifiability. Additionally, it can be
a indication of improper usage of inheritance and not clearly separated concerns

Response for a Class (RFC) Counts the number of other class functions called by a
class function call.

𝑅𝐹𝐶(𝐶) = |RS| = |{𝑀} ∪all 𝑖 {𝑅𝑖}| (4.23)

Where:

RS : Response set for the class 𝐶

{𝑀} : Set of all methods in the class 𝐶

{𝑅𝑖} : Set of methods called by another method 𝑖

In other words, the Response for a Class is the number of methods that can be invoked
when another method or object is called. High numbers are an indication of high class
complexity provoking heightened maintainability.

32 4. Results

Number of Methods (NOM) counts the number of methods of a class.

𝑁𝑂𝑀 = number of methods of class (4.24)

Indication for complexity and maintainability.

Number of Attributes (NOA) counts the number of attributes of a class.

𝑁𝑂𝐴 = number of class properties/attributes (4.25)

Indication for complexity and maintainability.

Fan-Out (FO) Counts the number of outgoing connections of class.

𝐹𝑂 = number of outgoing connections (4.26)

High values indicate higher dependency towards other classes. This can be a marking
of poor design and might elevate the complexity of the class. Furthermore adding
maintainability overhead by introducing more complex test cases.

Fan-In (FI) Counts the number of incoming connections to a class.

𝐹𝐼 = number incoming connections (4.27)

High values indicate that this class is widely used and might present a central pillar of
the code. These kinds of classes are to be treated with additional care, since changes in
those classes tend to have ripple effects and lead to other changes. Having too many of
such high FI classes influences complexity and cohesion. Additionally similar to NOC it
has impacts on modifiability.

4.2. Software Engineering metrics 33

Table 4.3: Software metric candidates

Software metric Quality indicator

Weighted Methods per Class (WMC) Complexity, Maintainability,
Readability

Coupling between Objects (CBO) Coupling, Complexity,
Maintainability, Modifiability,
Extensibility

Lack of Cohesion in Methods (LOCM) Complexity, Maintainability
Depth of Inheritance Tree (DIT) Complexity, Extensibility,

Maintainability, Readability
Lines of Code (LOC) Readability
Physical Lines of Code (PLOC) Readability
Physical Lines of Code (PLOC) Complexity, Maintainability,

Readability
Number of Children (NOC) Complexity, Coupling,

Modifiability
Response for a Class (RFC) Complexity
Number of Methods (NOM) Complexity, Maintainability,

Readability
Cyclomatic Complexity (CC) Complexity, Readability,

Maintainability
Number of Attributes (NOA) Complexity, Maintainability,

Readability
Fan-Out (FO) Cohesion, Complexity
Fan-In (FI) Cohesion, Complexity,

Modifiability

4.2.5 Code Smells

Code smells indicate potential design flaws in software. In that sense they are similar
to traditional metrics that underlay software principles but are generally of smaller
scope and have a smaller overall impact. Code smell measurements are mostly applied
independently of the size of the code scale and context. As such it represents a versatile
measuring utensil that can not only be applied to classes or modules but also to functions.

Refactoring: improving the design of existing code (1999) provides an extensive list
of various code smells and how to refactor them. Several of these identified smells, as
discussed in the subsequent paragraphs, are drawn from this source. Notably, code
smells tend to have an impact on specific quality metrics, particularly readability and
maintainability (Yamashita et al., 2012 ; Abbes et al., 2011).

This section presents candidates in the form of code smells. All candidates must

34 4. Results

adhere to the following inclusion criteria:

All potential code smell candidates must be:

1. deterministically quantifiable
2. assignable to at least one quality indicator Table 4.2

The calculation of some of these smells is straightforward, therefor mathematical
explanations are only provided where necessary.

Long methods Indicates overly complex function. Does not represent a standalone
metrics and rather uses Lines of Code to be calculated.

Parameter Count Counts the number of parameters of a function.

Nested conditions Counts the level nesting in a function or class.

Unused variables/methods Counts the number of dead code statements in the form
of unused variables and functions.

Magic Numbers Highlights and counts hard coded numbers in functions.

Broken Windows Shows and counts the number of unused variables, commented-out
code, or unreachable branches.

Code Duplication Measures and counts duplicated code lines.

Table 4.4: Code smells

Smell Quality Indicator

Long methods Readability, Maintainability
Parameter Count Readability, Maintainability
Nested conditions Readability
Unused variables/methods Readability, Maintainability
Magic Numbers Readability, Maintainability
Data clumps Readability, Maintainability
Broken Windows Readability
Code Duplication Maintainability

4.2. Software Engineering metrics 35

4.2.6 Results and Considerations

This thesis proposes 14 software metrics and identifies various code smells that meet
the criteria for evaluating the quality of generated code.

A potential evaluation method could look as follows: First, a collection of class-level
coding tasks, along with their reference solutions, is created. Subsequently, a set of
quality indicators from Table 4.2 is selected for this collection. For each task and quality
indicator pair, the associated software metrics from Table 4.3 and Table 4.4 are computed
and recorded alongside the reference solution.
During the evaluation process, a model under assessment has its generated code evalu-
ated using the same quality indicators and software metrics. The closer the metric of the
generated code aligns with the quality indicators of the reference solutions, the better
the overall score of the model.

This approach might even hold additional benefits. While NLP evaluation or functional
correctness assess only one aspect, traditional software engineering methods utilize
quality indicators that enable simultaneous assessment of multiple code qualities. This
broader scope offers a wider range of potential enhancement and comparison strategies
between models, and can effectively highlight nuances and differences among models.

Consequently, the existence of these metrics support the positive answer to the re-
search question: Can traditional software engineering metrics be used to assess the quality of
generated code.

5

Discussion

5.0.1 Threads

Capabilities of models

The biggest threat to the validity of this paper is the fact that most open source models
are not yet up to the task to compute solutions for high level specifications. The number
of token that can be reliably created is restricted, especially in the open source and
research communities that do not have the same resources as larger companies. Still,
there is steady progress in the capabilities of code generating models with longer
and wider context awareness. But it might still be too early for the application of
an evaluation framework that is mostly based on the assumption of longer, and more
complex code constructs, as seen in traditional software engineering and Object-Oriented
Programming.

The role of naturalness

A second threat, which is not widely acknowledged in this paper, would be that the
naturalness of code plays a greater role in the perceived quality of code than previously
assumed. For instance, one facet of human-written code that highlights its organic
nature and close resemblance to natural language is the adherence to coding conventions.
These conventions typically follow either naturally emerging patterns or predefined
rules, reflecting the inherent linguistic nature of coding.

Coding conventions depend on multiple factors and are hard to define and approach
in a mathematical manner. They follow the idea of code naturalness in the sense that
they manifest differently in different coding languages and can vary depending on
who is using them. They can be compared to dialects in natural language. They differ
from person to person but are mostly enforced in a grouping of developers that work
together on the same code. Coding conventions play into the overall quality of software
since the closer such syntactic guidelines are followed, the cleaner the code will be.
This in turn promotes maintainability and readability. Research into the huge code
base of Microsoft shows that approximately 18% of review threads/discussions in

36

5. Discussion 37

commits are mentioning some sort of coding conventions (Allamanis et al., 2014).
Such coding conventions play a big role in the perception of high quality code in a real
world scenario but cannot be adequately represented in a evaluation metric since it is
not deterministically quantifiable.

5.0.2 Future research

Creation of the evaluation set

Experience and the general acceptance of HumanEval in the case of functional correctness
show that manually setting up environments to use more specialized evaluation
frameworks is feasible. While creating a large enough evaluation set is time consuming
it is still perceived as worthwhile by the community. The same should consequently
hold true for the integration of traditional software metrics measurements into the
evaluation process. But the question on how such a framework should be constructed
still remains. Is there potential in using existing tools and interfaces to analyze generated
code or should new tools tailored for the model training process be crafted? Could
existing refernce solutions from CLASSEVAL or HumanEval be used to calculate a basic
reference solution for the traditional metrics approach? Or do we need humanly crafted
evaluation sets specifically constructed for assessing quality?
It is the intent to delve deeper into further research and others are encouraged to do the
same. This paper is meant provide a guideline and basis to create such frameworks that
can effectively evaluate future models in the code generation task.

Ensemble framework

This paper acknowledges the validity and necessity of NLP and function correctness
evaluation. It would be interesting to research an ensemble framework incorporating
these evaluation techniques with the addition of software metrics.

The following proposed evaluation framework would describe a crude version of
such an endeavor.

1. Code Naturalness:
Evaluation of the code naturalness by utilizing commonly used NLP metrics.

2. Functional Correctness:
Evaluation focused on functional correctness by utilizing a unit testing setup.
Unit testing frameworks will need an environment to run and test the generated
code. Preparing such evaluation environments is highly important since the
safety of the generated code cannot be guaranteed. Maintaining strict isolation of
the tested code is a necessary precaution, but can in turn produce considerable
overhead in preparing the evaluation pipeline. While beeing more invovled
such evaluation practices have found large acceptance in the research community

38 5. Discussion

and is already considered to be an industrial standard and is used to evaluate
newly created high performing models such as Gemini (Gemini Team et al., 2023).

3. Traditional Software Metrics:
Future research and models are expected to address broader and more complex
problem domains. Quality indicators such as maintainability, extensibility and
readability are important aspects of code and need to be integrated in the evaluation
process of code generating models. This can be achieved by utilizing the proposed
metrics in this paper.

6

Conclusion

Large Language Models have faced a shortage of alternative evaluation methods for
the code generation task, prompting recent research, including this paper, to introduce
novel ideas and proposing potential frameworks. To advance code generation models
effectively, it is essential to work with challenging evaluation metrics that drive research
of the code generation task.
Present and past evaluation metrics for the code-generating task have predominantly
prioritized NLP metrics and only recently transitioned into a more appropriate method
of measuring functional correctness by unit testing.
However, as future models grow more capable in understanding and responding to
larger problem domains and wider scopes, the current setup of evaluation metrics
needs to be reconsidered. Pursuing the notion of semantic, syntactical, and functional
correctness is essential, but it will not suffice to evaluate the code qualities at the class or
project level. Programs of this scale demand different methods like the ones applied
during the quality assessment of large-scale software. As such, the evaluation on
the basis of quality indicators found in traditional software engineering should be
considered.

This study finds that the role of software metrics has been largely ignored in the
research of code generating models. As such, the incorporation of traditional software
metrics in the evaluation process is proposed. Key findings suggest that traditional
software metrics are well suited for this evaluation task. A number of widely accepted
software metrics has been identified to describe the quality of generated code, providing
suitable candidates for the integration into a evaluation framework aimed to asses
current and future models.

39

This page intentionally left blank.

Bibliography

Abbes, Marwen et al. (2011). “An empirical study of the impact of two antipatterns, Blob and
Spaghetti Code, on program comprehension”. In: Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR, pp. 181–190. isbn: 9780769543437. doi: 10.1109/CSMR.
2011.24.

Alec, Radford et al. (2019). “Language Models are Unsupervised Multitask Learners | Enhanced
Reader”. In: OpenAI Blog 1.8, p. 9. url: https://github.com/codelucas/newspaper.

Allamanis, Miltiadis et al. (Feb. 2014). “Learning NATURAL coding conventions”. In: 16-21-
November-2014, pp. 281–293. doi: 10.1145/2635868.2635883. arXiv: 1402.4182. url: http:
//arxiv.org/abs/1402.4182%20http://dx.doi.org/10.1145/2635868.2635883.

Allamanis, Miltiadis et al. (2018). “A survey of machine learning for big code and naturalness”.
In: ACM Computing Surveys 51.4. issn: 15577341. doi: 10.1145/3212695. arXiv: 1709.06182. url:
http://learnbigcode.github.io/..

Austin, Jacob et al. (2021). “Program Synthesis with Large Language Models”. In: pp. 1–34. arXiv:
2108.07732. url: http://arxiv.org/abs/2108.07732.

Barr, E. T. and P. Devanbu (2016). “The naturalness of software”. In: Perspectives on Data Science for
Software Engineering. Elsevier, pp. 51–55. isbn: 9780128042069. doi: 10.1016/B978-0-12-804206-
9.00010-6. url: https://linkinghub.elsevier.com/retrieve/pii/B9780128042069000106.

Brown, Tom B. et al. (2020). “Language models are few-shot learners”. In: Advances in Neural
Information Processing Systems 2020-December. issn: 10495258. arXiv: 2005.14165.

Chen, Mark et al. (July 2021). “Evaluating Large Language Models Trained on Code”. In: arXiv:
2107.03374. url: http://arxiv.org/abs/2107.03374.

Chen, Shouyuan et al. (2023). “Extending Context Window of Large Language Models via
Positional Interpolation”. In: pp. 1–18. arXiv: 2306.15595. url: http://arxiv.org/abs/2306.
15595.

Chidamber, Shyam R. and Chris F. Kemerer (June 1994). “A Metrics Suite for Object Oriented
Design”. In: IEEE Transactions on Software Engineering 20.6, pp. 476–493. issn: 00985589. doi:
10.1109/32.295895. url: http://ieeexplore.ieee.org/document/295895/.

Cho, Kyunghyun et al. (2014). Learning phrase representations using RNN encoder-decoder for statistical
machine translation. doi: 10.3115/v1/d14-1179. arXiv: 1406.1078.

Devlin, Jacob et al. (2019). “BERT: Pre-training of deep bidirectional transformers for language
understanding”. In: NAACL HLT 2019 - 2019 Conference of the North American Chapter of the

42

https://doi.org/10.1109/CSMR.2011.24
https://doi.org/10.1109/CSMR.2011.24
https://github.com/codelucas/newspaper
https://doi.org/10.1145/2635868.2635883
https://arxiv.org/abs/1402.4182
http://arxiv.org/abs/1402.4182%20http://dx.doi.org/10.1145/2635868.2635883
http://arxiv.org/abs/1402.4182%20http://dx.doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/3212695
https://arxiv.org/abs/1709.06182
http://learnbigcode.github.io/.
https://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.1016/B978-0-12-804206-9.00010-6
https://doi.org/10.1016/B978-0-12-804206-9.00010-6
https://linkinghub.elsevier.com/retrieve/pii/B9780128042069000106
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
https://doi.org/10.1109/32.295895
http://ieeexplore.ieee.org/document/295895/
https://doi.org/10.3115/v1/d14-1179
https://arxiv.org/abs/1406.1078

BIBLIOGRAPHY 43

Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference.
Vol. 1, pp. 4171–4186. isbn: 9781950737130. arXiv: 1810.04805.

Driess, Danny et al. (2023). “PaLM-E: An Embodied Multimodal Language Model”. In: Proceedings
of Machine Learning Research 202, pp. 8469–8488. issn: 26403498. arXiv: 2303.03378.

Du, Xueying et al. (2023). “ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on
Class-level Code Generation”. In: Proceedings of 1. arXiv: 2308.01861. url: http://arxiv.org/
abs/2308.01861.

Evtikhiev, Mikhail et al. (2023). Out of the BLEU: How should we assess quality of the Code Generation
models? Vol. 203. 1. Association for Computing Machinery. doi: 10.1016/j.jss.2023.111741.
arXiv: 2208.03133.

Gemini Team et al. (2023). “Gemini: A Family of Highly Capable Multimodal Models”. In: arXiv:
2312.11805. url: http://arxiv.org/abs/2312.11805.

Google AI Blog (n.d.). https://blog.google/technology/ai/long-context-window-ai-
models/. Accessed: March 23, 2024.

Hendrycks, Dan et al. (2021). “Measuring Coding Challenge Competence With APPS”. In:
NeurIPS. arXiv: 2105.09938. url: http://arxiv.org/abs/2105.09938.

Huang, Dong et al. (2023). “AgentCoder: Multi-Agent-based Code Generation with Iterative
Testing and Optimisation”. In: arXiv: 2312.13010. url: http://arxiv.org/abs/2312.13010.

Jiang, Albert Q. et al. (2024). “Mixtral of Experts”. In: arXiv: 2401.04088. url: http://arxiv.
org/abs/2401.04088.

Jones, Karen Sparck (1994). “Natural Language Processing: A Historical Review”. In: pp. 3–16.
doi: 10.1007/978-0-585-35958-8_1.

Knuth, Donald E. (1984). “Literate Programming.” In: Computer Journal 27.2, pp. 97–111. issn:
00104620. doi: 10.1093/comjnl/27.2.97.

Kolen, John F. and Stefan C. Kremer (2001). “Gradient Flow in Recurrent Nets: The Difficulty of
Learning LongTerm Dependencies”. In: A Field Guide to Dynamical Recurrent Networks, pp. 237–243.
doi: 10.1109/9780470544037.ch14.

Lin, Chin-Yew (July 2004). “ROUGE: A Package for Automatic Evaluation of Summaries”. In:
pp. 74–81. url: https://aclanthology.org/W04-1013.

Martin, Rc (2000). “Design principles and design patterns”. In: Object Mentor c, pp. 1–34. url: http:
//www.cogs.susx.ac.uk/users/ctf20/dphil%7B%5C_%7D2005/Photos/Principles%7B%

5C_%7Dand%7B%5C_%7DPatterns.pdf%7B%5C%%7D5Cnhttp://scm0329.googlecode.com/svn-

history/r78/trunk/book/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf.

Martin, Robert C. (2014). Single Responsibility Principle. url: https://blog.cleancoder.com/
uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html (visited on 03/20/2024).

McCabe, T.J. (1976). “A Complexity Measure”. In: IEEE Transactions on Software Engineering
SE-2.4, pp. 308–320. doi: 10.1109/TSE.1976.233837.

Nuñez-Varela, Alberto S. et al. (2017). “Source code metrics: A systematic mapping study”. In:
Journal of Systems and Software 128, pp. 164–197. issn: 01641212. doi: 10.1016/j.jss.2017.03.044.
url: http://dx.doi.org/10.1016/j.jss.2017.03.044.

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2308.01861
http://arxiv.org/abs/2308.01861
http://arxiv.org/abs/2308.01861
https://doi.org/10.1016/j.jss.2023.111741
https://arxiv.org/abs/2208.03133
https://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://blog.google/technology/ai/long-context-window-ai-models/
https://blog.google/technology/ai/long-context-window-ai-models/
https://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2312.13010
http://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://doi.org/10.1007/978-0-585-35958-8_1
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1109/9780470544037.ch14
https://aclanthology.org/W04-1013
http://www.cogs.susx.ac.uk/users/ctf20/dphil%7B%5C_%7D2005/Photos/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf%7B%5C%%7D5Cnhttp://scm0329.googlecode.com/svn-history/r78/trunk/book/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf
http://www.cogs.susx.ac.uk/users/ctf20/dphil%7B%5C_%7D2005/Photos/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf%7B%5C%%7D5Cnhttp://scm0329.googlecode.com/svn-history/r78/trunk/book/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf
http://www.cogs.susx.ac.uk/users/ctf20/dphil%7B%5C_%7D2005/Photos/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf%7B%5C%%7D5Cnhttp://scm0329.googlecode.com/svn-history/r78/trunk/book/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf
http://www.cogs.susx.ac.uk/users/ctf20/dphil%7B%5C_%7D2005/Photos/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf%7B%5C%%7D5Cnhttp://scm0329.googlecode.com/svn-history/r78/trunk/book/Principles%7B%5C_%7Dand%7B%5C_%7DPatterns.pdf
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1016/j.jss.2017.03.044
http://dx.doi.org/10.1016/j.jss.2017.03.044

44 BIBLIOGRAPHY

OpenAI Platform Documentation (n.d.). https://platform.openai.com/docs/models/gpt-3-5-
turbo. Accessed: March 23, 2024.

Papineni, Kishore et al. (2002). “BLEU: A method for automatic evaluation of machine translation”.
In: Proceedings of the Annual Meeting of the Association for Computational Linguistics 2002-July.July,
pp. 311–318. issn: 0736587X.

Popović, Maja (Sept. 2015). “chrF: character n-gram F-score for automatic MT evaluation”. In:
Proceedings of the Tenth Workshop on Statistical Machine Translation. Ed. by Ondřej Bojar et al. Lisbon,
Portugal: Association for Computational Linguistics, pp. 392–395. doi: 10.18653/v1/W15-3049.
url: https://aclanthology.org/W15-3049.

Refactoring: improving the design of existing code (1999). USA: Addison-Wesley Longman Publishing
Co., Inc. isbn: 0201485672.

Ren, Shuo et al. (2020). “CodeBLEU: a Method for Automatic Evaluation of Code Synthesis”. In:
1949.Weaver 1955. arXiv: 2009.10297. url: http://arxiv.org/abs/2009.10297.

Scholar MIAGE (n.d.). https://scholar.miage.dev/. Accessed: March 23, 2024.

Touvron, Hugo et al. (2023a). “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In:
arXiv: 2307.09288. url: http://arxiv.org/abs/2307.09288.

Touvron, Hugo et al. (2023b). “LLaMA: Open and Efficient Foundation Language Models”. In:
arXiv: 2302.13971. url: http://arxiv.org/abs/2302.13971.

Tran, Ngoc et al. (2019). “Does BLEU score work for code migration?” In: IEEE International
Conference on Program Comprehension 2019-May, pp. 165–176. doi: 10.1109/ICPC.2019.00034.
arXiv: 1906.04903.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: 2017-December, pp. 5999–6009.
issn: 10495258. arXiv: 1706.03762.

Workshop, BigScience et al. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language
Model. arXiv: 2211.05100. url: http://arxiv.org/abs/2211.05100.

Yamashita, Aiko and Leon Moonen (2012). “Do code smells reflect important maintainability
aspects?” In: IEEE International Conference on Software Maintenance, ICSM, pp. 306–315. isbn:
9781467323123. doi: 10.1109/ICSM.2012.6405287.

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://doi.org/10.18653/v1/W15-3049
https://aclanthology.org/W15-3049
https://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
https://scholar.miage.dev/
https://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1109/ICPC.2019.00034
https://arxiv.org/abs/1906.04903
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
https://doi.org/10.1109/ICSM.2012.6405287

	Front Matter
	Cover
	Front Page
	Declaration
	Acknowledgements
	Abstract

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background
	Code Naturalness
	Code vs. Text

	Models
	Model basis
	Model sizes

	Methodology
	Results
	Existing evaluation
	NLP Methods
	NLP Metrics & Naturalness of Code
	Functional Correctness
	Current state of evaluation metrics and the lack thereof

	Software Engineering metrics
	Quality indicators
	Extraction
	Resulting indicators and considerations
	Software metrics
	Code Smells
	 Results and Considerations

	Discussion
	Threads
	Future research

	Conclusion

